Internationale datingsite roemenie

Rated 4.90/5 based on 600 customer reviews

In this paper we restrict ourselves to gender recognition, and it is also this aspect we will discuss further in this section.

With lexical N-grams, they reached an accuracy of 67.7%, which the combination with the sociolinguistic features increased to 72.33%. (2011) attempted to recognize gender in tweets from a whole set of languages, using word and character N-grams as features for machine learning with Support Vector Machines (SVM), Naive Bayes and Balanced Winnow2.For gender, the system checks the profile for about 150 common male and 150 common female first names, as well as for gender related words, such as father, mother, wife and husband.If no cue is found in a user s profile, no gender is assigned.Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.

Leave a Reply