Datingsite spiritueel gratis

Rated 4.75/5 based on 772 customer reviews

Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.When using all user tweets, they reached an accuracy of 88.0%.An interesting observation is that there is a clear class of misclassified users who have a majority of opposite gender users in their social network. When adding more information sources, such as profile fields, they reach an accuracy of 92.0%.Computational Linguistics in the Netherlands Journal 4 (2014) Submitted 06/2014; Published 12/2014 Gender Recognition on Dutch Tweets Hans van Halteren Nander Speerstra Radboud University Nijmegen, CLS, Linguistics Abstract In this paper, we investigate gender recognition on Dutch Twitter material, using a corpus consisting of the full Tweet production (as far as present in the Twi NL data set) of 600 users (known to be human individuals) over 2011 and We experimented with several authorship profiling techniques and various recognition features, using Tweet text only, in order to determine how well they could distinguish between male and female authors of Tweets.

datingsite spiritueel gratis-16

datingsite spiritueel gratis-78

datingsite spiritueel gratis-1

The authors do not report the set of slang words, but the non-dictionary words appear to be more related to style than to content, showing that purely linguistic behaviour can contribute information for gender recognition as well.

For all techniques and features, we ran the same 5-fold cross-validation experiments in order to determine how well they could be used to distinguish between male and female authors of tweets.

In the following sections, we first present some previous work on gender recognition (Section 2). Currently the field is getting an impulse for further development now that vast data sets of user generated data is becoming available. (2012) show that authorship recognition is also possible (to some degree) if the number of candidate authors is as high as 100,000 (as compared to the usually less than ten in traditional studies).

For each blogger, metadata is present, including the blogger s self-provided gender, age, industry and astrological sign. The creators themselves used it for various classification tasks, including gender recognition (Koppel et al. The men, on the other hand, seem to be more interested in computers, leading to important content words like software and game, and correspondingly more determiners and prepositions.

One gets the impression that gender recognition is more sociological than linguistic, showing what women and men were blogging about back in A later study (Goswami et al.

Leave a Reply